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Highlights

• Data heterogeneity leads to spurious classification and feature selection

results.

• Our embedded feature selection method can account for unknown data

heterogeneity.

• Sparse optimal scoring on the adjusted data is proposed for multi-class

classification.

• Effective proximal gradient update rules are developed to find optimal

solutions.

• Our method outperforms the state-of-the-arts on synthetic data and three

benchmark image datasets.
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Abstract

Data heterogeneity is one of the big challenges in modern data analysis caused

by the effects of unknown/unwanted factors introduced during data collection

procedures. It will cause spurious estimation of variable effects when tradi-

tional methods are applied for feature selection which simply assume that data

samples are independently and identically distributed. Although some existing

statistical models can evaluate more accurately the significance of each variable

by estimating and including unknown factors as covariates, they are categorized

as filter methods suffering from variable redundancy and lack of predictabil-

ity. Therefore, we propose an embedded feature selection method from a sparse

learning perspective capable of adjusting unknown heterogeneity. Its perfor-

mance is investigated by evaluating the classification performance using the

selected features in multi-class classification problems. Benefitting from the ef-

fective adjustment of unknown heterogeneity and model selection strategy, the

experimental results on synthetic data and three real-world benchmark data

sets have shown that our method can achieve consistent superiority over several

conventional embedded methods and existing statistical models.

Keywords: feature selection, data heterogeneity, embedded method, sparse

optimal scoring.
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1. Introduction

In real-world applications, heterogenous data is becoming more prevalent (Fan

et al., 2014; Li et al., 2016) with the generation of big data with large number

of samples or measured features. Typically heterogenous data refers to data

coming from disparate data sources in machine learning area. However, data5

heterogeneity has a broader definition in statistics area which refers to the pat-

terns of variation due to any unmodeled factor including group factor and other

unwanted factors that could be known or unknown. For instance, people some-

times collect data from multiple sources to generate big data. In this case, the

source where a sample comes from is a known group factor that leads to data10

heterogeneity. Fig. 1 shows an intuitive example demonstrating the impact of

data heterogeneity. There are 300 samples lying in a 2-D feature space shown

by Fig. 1(a) in which the first 100 samples belongs to Class 1; the next 100

samples belongs to Class 2; and the others Class 3. Each class of samples are

generated from a distinct Gaussian distribution with a different mean. Fig. 1(b)15

shows the distribution of data heterogeneity, where the first half samples and the

other half are supposed coming from two different sources and generated via two

Gaussian signals with different means. Fig. 1(c) shows the distribution of all the

samples under the impact of data heterogeneity from Fig. 1(b). From Fig. 1,

we have the following observations: In (a), the samples are clearly separated20

into three classes based on the features; Moreover, either one of the features

can not clearly separate them. In (c), all the samples fall into two clusters that

correspond to the two sources instead of the true three classes; The pattern of

data variation changed; The samples can be well separated using only the first

feature. It demonstrates that in this example the data heterogeneity blurs the25

true effects of features and leads to spurious classification and feature selection

results if standard methods are utilized. This consequently requires the develop-

ment of new sophisticated methods to take good care of the data heterogeneity

for various types of data analyses such as classification and feature selection.

The above example shows the data heterogeneity caused by a known group30
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Figure 1: An example showing the impact of heterogeneity. (a) shows the data samples falling

into 3 classes in a 2-D space; (b) shows the heterogeneity introduced by two different sources;

(c) shows the new data distribution under additional effect from the heterogeneity, which

however exhibits a spurious 2-class structure that can be identified using just Feature 1.

factor. However, in most cases, data heterogeneity is usually caused by factors

that are unaware or unknown introduced during the data generation step. In

bioinformatics area, the microarray data frequently suffer from the unknown

heterogeneity that may be either biological or technical in nature. For example,

some unaware conditions in the laboratory or chips such as temperature and35

the amount of ozone in the air are key environmental factors that can affect

gene expression values (Fare et al., 2003; Boedigheimer et al., 2008). Speech

data can be influenced by the unaware factors such as accent of the speaker as

well as the laboratories that the tests were performed in. Image data can also

vary subject to unaware lighting conditions. These unknown data heterogeneity40

poses even more difficulties in developing powerful strategies for analyses of

heterogeneous data. In this article, we will focus on tackling the unknown data

heterogeneity and develop a powerful embedded feature selection method for

heterogeneous data that can be applied for simultaneous feature selection and

multi-class classification.45

Over the past few decades, many feature selection methods are proposed

and have proven to be effective in handling high-dimensional data. Feature

selection methods fall into three categories: filter methods, wrapper methods

and embedded methods according to their search strategies. Filter methods
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can achieve high computational efficiency without running any learning algo-50

rithms, but may select a set of features that are not optimal as input of a target

learning algorithm for subsequent classification. Although wrapper methods

attempt to select the optimal features guided by the performance of learning

algorithms, the computational cost is very high due to the exponential search

space. Embedded methods provide a trade-off solution between filter methods55

and wrapper methods by embedding feature selection into the model learning.

They return both the learned model and selected features simultaneously and

are often employed for classification. The most widely used embedded methods

are the regularization models such as Lasso (Tibshirani, 1996), sparse linear dis-

criminant analysis (Clemmensen et al., 2011; Wu et al., 2015) and regularized60

support vector machine (Weston et al., 2000; Zhu et al., 2004; Wang et al., 2006).

Many recent sparse learning methods are proposed in form of `2,1-norm regu-

larized regression models for multi-class classification (Xiang et al., 2012; Du &

Shen, 2015; Han et al., 2015). The form of matrix norm has also been extended

to `2,p(p ∈ (0, 1]) (Wang et al., 2014; Tao et al., 2016) and `r,p(r > 1) norms for65

robust feature selection. There also exists several sparse kernel-based learning

methods to improve classification accuracy and feature sparsity. For instance,

JCFO (Krishnapuram et al., 2004) seeks sparse kernel basis functions and fea-

tures by introducing Gaussian priors to their scaling parameters in a Bayesian

model for feature selection. Recently, RSFM (Mohsenzadeh et al., 2013) imposes70

Gaussian priors to both feature weights and sample weights to simultaneously

select relevant samples and relevant features. To reduce its high computational

complexity, IRSFM (Mohsenzadeh et al., 2016) employs a constructive proce-

dure for model learning which is computationally efficient for data sets with

large number of samples. However, most of the above conventional feature se-75

lection methods are designed for generic data that are assumed independently

and identically distributed (i.i.d.). Heterogenous data violates this simple as-

sumption of data distribution, which calls for sophisticated feature selection

methods to take care of the heterogeneity. Leek & Store (2007) have proposed

a surrogate variable analysis (SVA) method to adjust unobserved heterogeneity80
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in gene expression analysis. This statistical method attempts to represent the

gene expression heterogeneity by the estimated surrogate variables and then use

them as covariates while analyzing the association between genes and disease

phenotypes. It can be considered as a filter method if the top ranked genes are

selected based on their significance scores of association, which unfortunately85

suffers from the common issues of filter methods. To overcome the well-known

issues of variable redundancy and lack of predictability in this filter method, we

propose an effective embedded feature selection method from a sparse learning

perspective capable of adjusting the unknown data heterogeneity.

Our work has three main contributions: (1) To the best of our knowledge,90

this is the first embedded feature selection method that takes unknown data

heterogeneity into account by explicitly capturing the unknown heterogeneous

factors; (2) We derive the corresponding proximal gradient descent algorithm to

solve a sparse optimal scoring model on an adjusted data set, which promises

good convergency rate and effective updates in each step; (3) The experimental95

results on three image benchmark data sets have shown the superiority of our

selected features in multi-class classification to those features selected from con-

ventional methods ignoring data heterogeneity, especially when a small number

of features are selected. The rest of this paper is organized as follows. Section 2

describes the problem and briefly reviews the related work including SVA and100

optimal scoring; Section 3 describes our feature selection strategy capable of

adjusting data heterogeneity. It also introduces an effective proximal gradient

algorithm to find the optimal solutions as well as the class-prediction rules for

new samples; Section 4 illustrates the classification and feature selection per-

formance of our method on the synthetic data simulated under different extent105

of data heterogeneity; Section 5 illustrates the classification performance us-

ing the selected features from our method comparing to several state-of-the-art

methods via the experiments on three benchmark data sets. The sensitivity of

the number of heterogeneous factors is also studied for our method; Section 6

concludes the paper.110
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2. Background

2.1. Problem Statement

Let matrix X denote a data set of n samples and p features and the i-th

row of X corresponds to a sample denoted by xi. Each sample is influenced by

a response variable of interest and some other unknown signals. Assuming the115

response variable have C possible choices of classes, we denote the corresponding

responses for all the samples by an indicator matrix Y containing only ‘0’ and

‘1’ values in which the element yic with value ‘1’ denotes that the i-th sample

belongs to the c-th class and vice versa. Since the factor of interest in our study is

the response variable, those unknown signals will cause unwanted heterogeneity120

and need to be adjusted.

Problem Definition: Given the input data X influenced by the response indi-

cator Y and some other unknown factors, find a subset S consisting of t features

and a function δ: x′ → y′ such that for a new sample x′ represented by the t

features, it uniquely assigns a class membership y′ to x′ and aims to achieve125

the lowest classification error using the feature set S.

2.2. Related Work

To solve the target problem, two crucial subproblems need to be addressed:

how to capture the unknown data heterogeneity and how to adjust it in a multi-

class classifier that is capable of selecting features. Surrogate variable analysis130

(SVA) proposed by Leek & Store (2007) is an effective statistical method that

can estimate the unknown heterogenous factors and adjust their effects in an

association study for feature selection. Although this statistical analysis method

suffers from the disadvantages of filter method, it provides an effective way to

extract the unknown heterogenous factors from the data. As to the second135

subproblem, we will start by introducing the optimal scoring method (Hastie

et al., 1994) that is identical to linear discriminant analysis (LDA) in regression

context which enables embedded feature selection for multi-class classification.
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2.2.1. Surrogate Variable Analysis—a filter method

The overall goal of SVA is to provide a more accurate and reproducible140

parsing of the effects of interesting variables and unwanted heterogeneity in an

association analysis when data heterogeneity is present (Leek & Store, 2007).

Basically it can be described by the following steps in the context of our problem.

Step 1. Remove the effects from the variables of interest (i.e. the response

variable).145

In many standard statistical analyses, samples are typically assumed col-

lected with random noises. Correspondingly, X is intuitively modeled as:

X = Y Γ + Υ, (1)

where Υ ∈ Rn×p is the i.i.d. noise term whose element εij ∼ N(0, σ2). Γ ∈
RC×p determines the influences of various responses on all the features. How-

ever, in the big data age, there may exist some other unknown factors causing150

unwanted heterogeneity of the data variation as mentioned previously. This un-

known heterogeneity describes patterns of variation due to unmodeled factors

that contribute to the variation of measured features in X but are not explicitly

included in the intuitive model (1). Assume there are l unknown factors denoted

by U = {um : 1 ≤ m ≤ l}. Consequently, model (1) is corrected as:155

X = Y Γ + UΨ + Υ (2)

for heterogenous data exhibiting heterogeneity caused by unknown factors, where

Ψ ∈ Rl×p reflects the influences of unknown factors on all the features.

Denote the column space of Y by <Y . Then the residual operator of Y

that projects onto the orthogonal complement of <Y is denoted by RY , i.e.,

I − Y (Y TY )−1Y T . Multiply both sides of model (2) by RY to obtain160

RYX = RY Y Γ +RY UΨ +RY Υ

= RY UΨ +RY Υ, (3)

which removes the effects from the response variable to facilitate the next study

of unknown factors.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Step 2. Obtain signatures of unknown heterogeneity.

The estimation of um(1 ≤ m ≤ l) from equation (3) is a challenging sta-

tistical problem. This step estimates signatures hm(1 ≤ m ≤ l) instead which165

represent the residual heterogeneity RY UΨ. Any factor analysis method can

be applied on RYX to produce hm. Singular value decomposition (SVD) is

considered here to remove arbitrary. The orthogonal basis of singular vectors

are regarded as signatures driven by the unknown factors.

Step 3. Construct unknown factors.170

For each signature hm,

1) collect a set of features of X most associated with it;

2) perform SVD on the set and return the eigenvectors ej(1 ≤ j ≤ n);

3) let j∗ = argmax1≤j≤ncor(ej ,hm) and set ûm = ej∗ .

The estimated unknown factors {ûm : (1 ≤ m ≤ l)} are also regarded as175

surrogate variables.

Step 4. Association analysis using estimated unknown factors as covariates.

Include all the estimated unknown factors (i.e. surrogate variables) as covari-

ates in the subsequent regression model with a given feature as dependent vari-

able and the response as independent variable. Then, a more accurate statistical180

significance of each feature can be estimated by adjusting the data heterogeneity.

2.2.2. Optimal Scoring—a flexible multi-class classifier

Optimal scoring is a regression problem equivalent to linear discriminative

analysis (LDA). The point of optimal scoring is to turn categorical class variables

into quantitative ones by assigning scores to class labels such that the relations185

between features and classes can be estimated by solving a linear regression

problem with constraints. Given a C-vector of scores θ corresponding to the C

classes, Y θ calculates a vector of response scores for the samples which one may

regress on the predictor matrix X. The optimal scoring problem is formulated to

estimate such a sequence of θ: Θ = {θ1 · · ·θk} and the corresponding sequence190
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of regression coefficients B = {β1 · · ·βk} as following:

min
Θ,B

1

n
‖ YΘ−XB ‖2F

s.t. ΘTY TYΘ = I,

where ‖ . ‖F denotes the Frobenius norm. The above orthogonality constraint

ensures that optimal scoring is equivalent to LDA. The sequence of βk are known

to be identical to the sequence of LDA discriminant vectors up to scalars (Mar-

dia et al., 1979). Owing to this elegant regression framework, optimal scoring195

can be easily extended to regularized versions such as penalized optimal scor-

ing (Hastie et al., 1995) to improve the classification performance especially for

high-dimensional data.

To solve this optimization problem, Hastie et al. (1994) proposed the fol-

lowing algorithm:200

(1) Choose an initial score matrix Θ0 satisfying ΘT
0 Y

TYΘ0 = I.

(2) Fit a multiple regression model of YΘ on X, yielding fitted values B̂ =

(XTX)−1XTYΘ0.

(3) Obtain eigenvector matrix Φ of ΘT
0 Y

TX(XTX)−1XTYΘ0; the optimal

scores are Θ̂ = Θ0Φ.205

(4) Update B̂ by B̂Φ.

Define D as a diagonal matrix with the k-th diagonal term as:

Dkk = { 1

α2
k(1− α2

k)
} 1

2 ,

where αk is the k-th largest eigenvalue calculated in step (3). The decision rule

for a new sample x′ is to assign it to class c that minimizes:

‖ DB̂T (x′ − µc) ‖2,

where µc denotes the centroid of the c-th class.210

Optimal scoring is an effective and flexible tool for multi-class classification

due to its equivalence to LDA and flexible regression framework that enables

model regularization and feature selection.
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3. Methodology

Due to the feature redundancy and lack of predictability issue of filter215

method SVA, we aim to develop an embedded feature selection method that

can accomplish both feature selection and classification in a regularized regres-

sion framework based on the adjusted data. We believe that the variation of the

input data comes from two sources: the response variable y and other unknown

factors U which leads to the unwanted heterogeneity that deteriorates the per-220

formance of classification and feature selection. Correspondingly, the input data

X is modeled as equation (2):

X = Y Γ + UΨ + Υ.

Our strategy contains two main procedures: 1) remove the variation from the

source of unknown factors U and build an adjusted data set Xa whose variation

is only determined by the response Y ; and 2) select features with a sparse225

learning model of multi-class classification based on Xa .

3.1. Removing unknown data heterogeneity

In the first procedure, we need to first estimate the unknown factors U from

the data model (2) which however is generally impossible to directly accomplish

due to the unidentifiability problem explained as below. Let A denote any230

invertible l × l matrix. Then

(UA)(A−1Ψ) = UΨ,

so neither U or Ψ are identifiable. Alternatively, a feasible intermediate step

is introduced to first estimate the corresponding signatures for the unknown

factors um(1 ≤ m ≤ l) to represent the signals that are independent of Y . These235

signatures are easy to be estimated. One should notice that the signatures are

neither necessarily physically meaningful nor exactly U since U is not necessarily

independent of Y . To allow for physical meanings and potential overlap with the

response variable Y , each um is extracted from a set of original data variables

most correlated with its corresponding signature. The detailed procedure of240
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estimating U is implemented using the same first three steps of SVA illustrated

in Section 2.2. Consequently, the true associations between features and the

response variable are then assumed hidden in the adjusted data Xa obtained as

X − UΨ by removing the unknown heterogeneity.

As the unknown heterogeneity is usually introduced during the data collec-245

tion or experiment design phase which directly affect the data variation pattern,

there is no direct causal relationship between the unknown factors and response

variables. Therefore, the adjustment for unknown heterogeneity can be per-

formed prior to the subsequent analyses that involve response variables. This

separate adjustment procedure allows for the alleviation of computational bur-250

den in the down-stream analyses and the flexibility of study of feature selection

and classification.

3.2. Sparse optimal scoring based on the adjusted data set

To select a set of features that can achieve the best classification perfor-

mance, we develop an embedded feature selection method on the adjusted data255

set to estimate the true effects of features in separating the classes. As we men-

tioned in the related work, optimal scoring is an attractive multi-class classifica-

tion approach due to its equivalent performance to LDA and flexible regression

framework. The extension of optimal scoring to a regularized version for sparse

learning enables embedded feature selection and is more natural than the ex-260

tension of LDA to sparse LDA. We perform a sparse optimal scoring method

on the adjusted data set, which turns the response indicator Y into a sequence

of quantitive uni-variate outcomes by assigning a sequence of scores stored in

Θ to each corresponding class and then performs regularized regression of the

sequence of quantitive outcomes on Xa. We name our method as sparse opti-265

mal scoring with adjustment (SOSA). Correspondingly, the embedded feature

selection by SOSA is formulated as:

min
B,Θ

1

n
||XaB − YΘ||2F + λΩ(B)

s.t. ΘTY TYΘ = I, (4)
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in which Ω(.) is a regularization function of a matrix that sums up its row norms,

i.e, Ω(B) =
∑p
j=1 ||bj ||2 where bj is a row vector denoting the j-th row of the

p× k projection matrix B. With an appropriate choice of λ, this model allows270

for feature selection by shrinking some bj exactly to a zero vector which suggests

that the j-th feature is not selected. Our SOSA has the similar formulation as

the sparse optimal scoring model in (Leng, 2008) but with a different design

matrix containing adjusted features exempt from the unknown heterogeneity.

In our model, the fact that our design matrix Xa lacks orthonormality further275

poses difficulty to solve (4).

Existing algorithms for solving sparse optimal scoring problem regard it as a

group lasso problem by considering each row of B as a group and reshaping B to

a long vector containing p groups. However, those strategies solving group lasso

problem such as least angle regression selection (LARS) (Yuan & Lin, 2006) or280

extension of shooting algorithm based on Karush−Kuhn−Tucker (KKT) con-

ditions require the design matrix to be orthonormal. The general situation in

adopting these strategies to solve group lasso/sparse optimal scoring problem is

to orthonormalize the data first and then solve the problem in terms of the new

data, which however leads to a different problem inequivalent to the original one285

resulting in irrelevant solutions that are not able to reverse back. Although an

alternative strategy is proposed by Simon & Tibshirani (2012) to extend group

lasso to general data by penalizing the fit of group for model selection, unfor-

tunately this alternative strategy does not work for the sparse optimal scoring

problem. We propose an algorithm using proximal gradient to solve SOSA for290

general design matrix Xa that is not necessarily orthonormal.

To solve problem (4), we iteratively update B and Θ until convergence.

(1) update B. Given Θ, we update B by solving the following subproblem:

min
B

1

n
||XaB − YΘ||2F + λΩ(B). (5)

We propose a new algorithm to solve problem (5) by proximal operator Moreau

(1962) through an equivalent problem transformation.295
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Lemma 1. Consider a vector w =




v1

...

vk




pk×1

where vs(1 ≤ s ≤ k) is a

p-length vector. Let θs denote the s-th column of Θ and ψ be the l2,1-norm

mapping: w 7→ ∑
g∈G ‖ wg ‖2 in which G is a partition of {1, . . . , pk} defined

by a set
{
{j+(s−1)p | 1 ≤ s ≤ k}

∣∣1 ≤ j ≤ p
}

and wg denotes a k-length vector

storing the elements of w indexed by g in G. Consider a l2,1-norm regularized300

problem

min
w

1

n

k∑

s=1

||Xavs − Y θs||22 + λψ(w), (6)

then its solutions ŵ have these connections with (5)’s solutions B̂:

ŵ =




b̃1

...

b̃k




pk×1

, ŵg = b̂j,

where b̃s(1 ≤ s ≤ k) is the s-th column vector of B̂ and b̂j is the j-th row vector305

of B̂.

Proof. The relationship holds since (5) and (6) are equivalent which can be

easily proved by linear algebra.

By re-expressing (5), we arrive at its equivalent problem (6) with a nice

formulation that can be solved by proximal gradient (Bach et al., 2011) which310

is tailored to solve convex optimization problem of the following general form:

min
w

f(w) + λP (w), (7)

where f(.) is a convex differentiable function and P is typically a non-smooth

and non-Euclidean norm that induces sparsity. Consider a quadratic approxi-

mation of function f(w) which turns (7) into

min
w

f(wt) +∇f(wt)T (w −wt) +
L

2
‖ w −wt ‖22 +λP (w)

= min
w

1

2
‖ w − (wt − 1

L
∇f(wt)) ‖22 +

λ

L
P (w),

14
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where L > 0 is an upper bound on the Lipschitz constant of ∇f . Then, the315

general proximal gradient update rule (Moreau, 1962) is:

wt+1 = prox λ
LP

(u), where u = wt − 1

L
∇f(wt). (8)

Theorem 1. The proximal gradient update rules for solving problem (5) are

bt+1
j = (1−

λ
2d

‖ q(btj) ‖2
)+q(b

t
j), 1 ≤ j ≤ p,

where d is the largest eigenvalue of Xa; and

q(btj) = btj −
1

nd

(
BtTXT

a −ΘTY T
)

(Xa):j .

Proof. We start by finding the proximal gradient update rules for its equivalent

problem (6), in which we have320

f(w) =
1

n

k∑

s=1

||Xavs − Y θs||22,

P = ψ.

The first derivative of f(w) is computed as

∇f(w) =
2

n




XT
a Xav1 −XT

a Y θ1

...

XT
a Xavk −XT

a Y θk




pk×1

and the second derivative of f(w) is

H =
2

n




[XT
a Xa]p×p

. . .

[XT
a Xa]p×p




pk×pk

.

L is then set to the (smallest) Lipschitz constant of ∇f :325

L = 2emax(H) = 2emax(Xa) = 2d,

15
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where emax(.) denotes the largest eigenvalue of a matrix and d represents the

largest eigenvalue of Xa.

The proximal mapping for the l2,1-norm ψ with penalty λ is computed as

[proxλψ(u)]g = (1− λ

‖ ug ‖2
)+ug, g ∈ G,

according to Combettes & Wajs (2006) and Bach et al. (2011). By substituting

∇f(w), L and the proximal mapping function into the general proximal gradient330

update rules (8), we have the proximal gradient update rules for problem (6)

as:

wt+1
g = [prox λ

Lψ
(u)]g = (1−

λ
2d

‖ ug ‖2
)+ug, g ∈ G,

where

ug = wt
g −

1

L
[∇f(wt)]g

= wt
g −

1

nd




(XT
a )j:Xav

t
1 − (XT

a )j:Y θ1

...

(XT
a )j:Xav

t
k − (XT

a )j:Y θk




k×1

= wt
g −

1

nd

(
(XT

a )j:Xa[vt1, . . . ,v
t
k]− (XT

a )j:YΘ
)T

= wt
g −

1

nd

(
[vt1, . . . ,v

t
k]TXT

a −ΘTY T
)

(Xa):j .

Then, the proximal gradient update rules for problem (5) can be easily obtained

using the connections between ŵg and b̂j ; v̂s and b̃s stated by Lemma 1.335

(2) update Θ. In each (t+ 1)-th iteration, given fixed Bt, we update Θt+1 by

solving the following subproblem:

min
Θ

1

n
||XaB

t − YΘ||2F
s.t. ΘTY TYΘ = I.

By introducing a new variable Θ′ that equals (Y TY )
1
2 Θ, we transform this

subproblem to the following equivalent optimization problem with respect to
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Θ′:340

min
Θ′

1

n
||XaB

t − Y (Y TY )−
1
2 Θ′||2F

= min
Θ′

1

n
||(Y TY )−

1
2Y TXaB

t −Θ′||2F
s.t. Θ′TΘ′ = I.

Θ′ can be updated according to Theorem 2 proposed by Zou et al. (2006) given

below:

Theorem 2. Reduced-Rank Procrustes Rotation. Given two matrices MN×D

and NN×L, consider the constrained minimization problem

min
A
||M −NAT ||2 s.t . ATA = IL×L.

Suppose that the Singular Value Decomposition (SVD) of MTN is in the form345

of UDV T , then Â = UV T .

Denote Q as (Y TY )−
1
2Y TXaB

t. Compute SVD of Q = RΛV T . According

to Theorem 2, Θ′ is updated by RV T . Then, we have

Θt+1 = (Y TY )−
1
2RV T .

We alternatively update B and Θ until the change of objective function value

of (4) is less than a predefined small threshold. In summary, the full procedure350

for feature selection by SOSA is given in details as Algorithm 1. In this al-

gorithm, Stage I takes O(n2p+ npl) computational operations to estimate and

remove the heterogeneity. In Stage II, computing M and N has the computa-

tional complexity O(npg). The eigen decomposition of Xa has the complexity

O(n2p). The update of Θ and B has complexity O(npk) in each iteration. In355

total, the computational complexity of the whole procedure is O(n2p+ rnpk) if

it takes r iterations to converge.

3.3. Predicting the response for a new sample

Analogous to optimal scoring, our SOSA has the similar decision rule for

multi-class classification which however is applied in the adjusted feature space.360
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Algorithm 1 The algorithm for solving SOSA.

Input: X ∈ Rn×p; l: the desired number of heterogeneous factors; k: the

desired dimension of projection space; λ: the tuning parameter for regular-

ization; and the initial estimates of B and Θ.

// Stage I: remove unknown data heterogeneity.

1. Calculate RY as I − Y (Y TY )−1Y T and set the left l eigenvectors of RYX

as {h1, . . . ,hl}.
for m = 1 : l,

collect a set of features of X most associated with hm;

perform SVD on the set and return the eigenvectors ej(1 ≤ j ≤ n);

let j∗ = argmax1≤j≤ncor(ej ,hm) and set ûm = ej∗ .

end

2. Let Û = {û1, ..., ûl}. Calculate Ψ̂ as (ÛTRY Û)−1ÛTRYX and set Xa =

X − ÛΨ̂.

// Stage II: embedded feature selection on the adjusted data.

3. Calculate M = (Y TY )−
1
2Y TXa and N = XT

a Y . Do eigen decomposition

of Xa and set the largest eigen value as d.

4. Denote Q as MB. Calculate the SVD of Q = RΛV T and update Θ by

(Y TY )−
1
2RV T .

5. Calculate P = BTXT .

for j = 1, . . . , p,

t = [BT ]:j − 1
nd (PX:j −ΘT [NT ]:j)

update Bj: by (1− λ
2d‖t‖2 )+t.

end

6. Repeat 4-5 until convergence.

7. Return Û , Ψ̂, Θ̂ and B̂.
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One critical problem we are facing is how to derive the adjusted features for a

given new sample x′ such that we are able to employ the decision rule in the

adjusted feature space to predict the class label. Given the learnt coefficients Ψ̂

and Γ̂, we can derive the corresponding heterogeneous factor u′ for x′ based on

the following equation:365

x′ = Γ̂Ty′ + Ψ̂Tu′ + ε, (9)

where the heterogeneous factor u′ and the C-length vector y′ are unknown.

Compute RΓ̂T = I − Γ̂T (Γ̂Γ̂T )−1Γ̂. Multiply both sides of (9) by RΓ̂T to obtain

RΓ̂Tx
′ = RΓ̂T Ψ̂Tu′ +RΓ̂T ε.

Thus, u′ is estimated as

û′ = (Ψ̂RΓ̂T Ψ̂T )−1Ψ̂RΓ̂Tx
′

and then we have

xa
′ = x′ − Ψ̂T û′.

Obtain the largest k eigen values of Θ̂TY TXa(XT
a Xa)−1XT

a Y Θ̂. Define D370

as a diagonal matrix with the k-th diagonal term:

Dkk = { 1

α2
k(1− α2

k)
} 1

2 ,

where αk is the k-th largest eigenvalue calculated. The decision rule for a new

sample x′ is to assign it to class c that minimizes:

‖ DB̂T (xa
′ − µc) ‖2,

where µc =
∑

yi=c
(Xa)i:/nc denotes the centroid of the c-th class.

4. Simulation Study375

In this section, we investigate the performance of our algorithm on synthetic

data and focus on the study of the impact of data heterogeneity on classification
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and feature selection performance. The synthetic data is simulated based on our

previously introduced model (2):

X = Y Γ + UΨ + Υ.

We simulated n = 100 samples containing p = 5, 000 features. The samples are380

assumed having a potential class structure represented by a n× C matrix Y

which however is affected by l additional heterogeneous factors stored in a n× l
matrix U . We set C to 10 and labeled every 10 samples from 1 to 10 for simplic-

ity. The first 100 features are assumed to be able to discriminate the C classes

while the remaining ones are redundant features. Since the c-th row of Γ stores385

the influences of class c on all the features, we sampled the first 100 elements

of c-th row of Γ from a normal distribution with zero mean and the standard

deviation as sc which is sampled uniformly from the range of 0.01− 0.1. The

other elements in Γ is sampled from a normal distribution with zero mean and

the standard deviation as 0.005 to discriminate the true features and redundant390

features. For the m-th row of Ψ that stores the effects of the m-th heterogeneous

factor on all the features, we sampled its elements from a normal distribution

with mean as µ and the standard deviation as sm which is sampled uniformly

from the range of 0.01− 0.1. By varying µ and the number of heterogenous

factors l, we can control the strength of data heterogeneity. We sampled U395

from a multivariate normal distribution N(0, Il×l). Then, the columns of U are

orthogonalized to assure that the heterogeneous factors are not correlated. Υ

is the random noise which is sampled from a multivariate normal distribution

N(0, 0.01 ∗ Il×l). Finally, X is obtained based on model (2).

We run our SOSA on several settings of the synthetic data, comparing with400

two embedded feature selection methods without adjusting the unknown data

heterogeneity and a filter method accounting for the data heterogeneity:

1) L1-SVM (Fan et al., 2008) — an embeded feature selection method by

imposing `1 regularization on the coefficients of the popular standard SVM for

multi-class classification;405

2) SOS (sparse optimal scoring) — an embeded feature selection method
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built by using the original data X instead of the adjusted data Xa as the in-

put for model (4). Consequently, SOS employs the same classification model as

SOSA, but the only difference is that SOS lacks the adjustment of data hetero-

geneity. This will ensure a fair comparison of the performance in adjusting data410

heterogeneity;

-3) SVA (surrogate variable analysis) (Leek & Store, 2007) — a representa-

tive filter method capable of taking care of unknown data heterogeneity.

In addition, we also considered the classification performance using all the

features as baseline. To guarantee the fairness of comparison of feature selec-415

tion efficacy, we examined the resulted classification performance based on an

uniform classifier: 1-nearest neighbor for all the methods using their selected

features respectively. In this simulation study, we randomly sampled 10% sam-

ples as the testing samples and the others are regarded as training samples.

The classification performance is evaluated by the average classification testing420

error over 100 simulations. The feature selection performance is evaluated by

the hit ratio which is calculated as the percentage of the 100 true features that

are correctly selected. Table 1 reports the hit ratio and classification error rate

respectively for all the methods under 3 different choices of µ and 5 different

choices of l. As we can see, with increasing number of heterogeneous factors425

or heterogeneity effects, the error rate of all the methods will increase except

some cases of SOSA. Using all features for classification suffer badly from the

data heterogeneity, especially when l and µ are moderate or large. Although

SVA can adjust these effect, its classification and feature selection performance

are still not satisfying due to the disadvantages of filtering method. Both SOS430

and L1-SVM can achieve lower error rate and higher hit ratio benefit from their

sparse learning models. In some settings, L1-SVM can perform better in both

criteria than SOS probably because of its kernel-based learning framework can

somehow help alleviate the data heterogeneity. Our SOSA performs the best

out of all the settings in both criteria due to the appropriate adjustment of435

data heterogeneity and sparse learning approach. We also observed that with

increasing number of heterogeneous factors or heterogeneity effects, the hit ratio
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µ=0.1 µ=0.3 µ=0.5

l Method Hit(%) Error(%) Hit(%) Error(%) Hit(%) Error(%)

1

baseline -(-) 4.00(0.95) -(-) 21.0(1.72) -(-) 36.3(2.36)

SVA 27(0.93) 5.00(1.16) 26.9(0.91) 9.00(1.25) 26.9(0.91) 13.7(1.51)

SOSA 99.5(0.16) 0.00(0.00) 99.5(0.16) 0.00(0.00) 99.5(0.17) 0.00(0.00)

SOS 90.2(0.94) 0.00(0.00) 97.8(0.32) 0.67(0.36) 96.2(0.34) 3.67(0.87)

L1-SVM 60.5(1.24) 0.00(0.00) 70.2(1.53) 1.33(0.49) 79.1(1.64) 3.67(0.95)

5

baseline -(-) 58.6(2.12) -(-) 64.3(1.73) -(-) 70.0(1.89)

SVA 22.1(1.17) 22.0(2.58) 22.1(1.21) 31.3(2.89) 23.0(1.23) 39.0(2.79)

SOSA 99.2(0.14) 0.00(0.00) 99.1(0.14) 0.00(0.00) 99.4(0.14) 0.00(0.00)

SOS 98.2(0.19) 1.00(0.43) 92.7(0.64) 6.33(1.08) 78.4(1.31) 16.0(1.51)

L1-SVM 69.7(1.06) 1.67(0.65) 83.0(0.87) 5.33(1.16) 85.5(0.55) 15.0(1.47)

10

baseline -(-) 77.0(2.20) -(-) 80.0(1.62) -(-) 81.3(1.65)

SVA 24.0(0.89) 31.3(2.92) 25.7(0.90) 38.0(2.47) 29.1(0.98) 43.7(2.33)

SOSA 98.1(0.27) 0.00(0.00) 98.8(0.22) 0.00(0.00) 99.3(0.14) 3.00(2.09)

SOS 98.3(0.17) 2.00(0.57) 85.5(0.73) 14.3(1.52) 60.7(1.39) 29.3(2.38)

L1-SVM 71.7(1.39) 3.33(0.77) 81.9(1.05) 13.7(1.59) 82.1(0.73) 21.3(2.09)

15

baseline -(-) 77.0(2.14) -(-) 77.0(2.20) -(-) 78.3(1.86)

SVA 22.2(0.93) 37.0(2.97) 26.0(1.01) 39.0(2.55) 31.8(1.01) 43.7(2.21)

SOSA 97.7(0.35) 0.00(0.00) 99.5(0.12) 0.33(0.34) 98.4(0.30) 2.67(1.43)

SOS 97.1(0.34) 1.67(0.54) 77.1(1.21) 16.7(1.83) 47.1(1.58) 34.7(2.16)

L1-SVM 75.4(1.04) 3.33(0.93) 82.8(0.68) 15.0(1.77) 82.4(0.49) 25.0(1.88)

Table 1: Comparison of the performance of SVA, SOS, SOSA and L1-SVM on synthetic data

with 5,000 features under different numbers of heterogeneous factors and different levels of

heterogeneity effect. The average (standard deviation) of hit ratio, classification error rate,

running time over 100 simulations are presented for these methods as well as the baseline

using all the features.

for SVA and L1-SVM somehow increases, which probably is influenced by the

bad feature selection strategy or inappropriate adjustment of heterogeneity. In

summary, our SOSA can achieve significant improvement in the classification440

and feature selection performance to other methods by appropriately adjusting

the data heterogeneity in a sparse learning model. Moreover, this superiority is

consistent among various cases corresponding to different extent of data hetero-

geneity.
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5. Experiments on Real-world Data445

5.1. Data sets

We conducted our experiments on three benchmark data sets whose impor-

tant statistics are summarized by Table 2.

The first one is ORL face database (Samaria & Harter, 1994) which consists

of a total of 400 face images. There are ten different grey images of each of450

40 distinct subjects. For some subjects, the images were captured at different

times under varying conditions such as the lighting, facial expressions (open or

closed eyes, smiling or not smiling) and facial details (glasses or no glasses).

The images were taken with a tolerance for some tilting and rotation of the

face up to 20 degrees. We use the normalized (in scale and orientation) images455

processed by He et al. (2005) such that the two eyes were aligned at the same

position. They cropped the facial areas into the final images for matching. The

size of each cropped image is 32×32 pixels. Correspondingly, each face image

can be represented by a 1,024-dimensional vector.

The second one is COIL20 image library (Nene et al., 1996) from Columbia460

which contains 20 objects. There are 72 grey images for each object taking 5

degrees apart as the object is rotated on a turn table. The size of each image

is 32×32 pixels. Correspondingly, each object image can be represented by a

1,024-dimensional vector.

The third one is the UCI DrivFace data which contains facial images se-465

quences of subjects while driving in real scenarios (KaterineDiaz-Chito et al.,

2016). It is composed of 606 samples of 80×80 pixels each, acquired over dif-

ferent days from 4 drivers (2 women and 2 men) with several facial features

like beard or glasses. Each driver can have three possible gaze direction: look-

ing-right, frontal and looking-left. Correspondingly, each facial image can be470

represented by a 6,400-dimensional vector. Note that this data set has different

class sample size in a range from 90 to 179. It is unbalanced while the other two

data sets are balanced with equal number of samples for each class.
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Data set No. of samples No. of features No. of classes No. of samples per class

ORL 400 1,024 40 10

COIL20 1,440 1,024 20 72

DrivFace 606 6,400 4 90-179

Table 2: Statistics of three benchmark data sets.

5.2. Experimental setting

In order to evaluate the multi-class feature selection and classification perfor-475

mance more thoroughly, we studied several settings corresponding to different

number of data samples and different number of classes. Specifically, for each

data set, we selected all the samples of C random classes out of the total classes

and then evaluate the C-class feature selection and classification performance on

the corresponding data subset. Knowing that the entire ORL, COIL20 and Driv-480

Face data consist of 40, 20 and 4 respective classes, we set C = (10, 20, 30, 40)

for ORL; C = (5, 10, 15, 20) for COIL20; and C = (2, 4) for DrivFace. This thus

leads to the corresponding data subsets of (100, 200, 300, 400) samples for ORL;

(360, 720, 1080, 1440) samples for COIL20; and (257, 606) samples for DrivFace.

We show the effectiveness of our proposed SOSA by evaluating its perfor-485

mance in feature selection and classification, comparing with L1-SVM, SOS

and SVA introduced in the simulation study. In addition, we also considered

the classification performance using all the features as baseline. To guarantee

the fairness of comparison of feature selection efficacy, we examined the resulted

classification performance based on an uniform classifier: 1-nearest neighbor for490

all the methods using their selected features respectively. Their classification

performance were evaluated by the criterion of classification testing error rate

based on cross-validation.

For each setting of each data set, we employed L1-SVM, SVA, SOS and our

SOSA to select t features and then evaluated the classification performance for495

each method based on their selected t features using 10-fold cross validation.
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In detail, for SVA, we ranked all the features and selected the top t features

according to their p-values calculated using F -test which compares the standard

model (1) and the corrected model (2) using heterogeneous factors as covariates.

To realize L1-SVM, we implemented `1-regularized hinge-loss support vector500

multi-class classification by applying the LiblineaR package from Fan et al.

(2008). Since each feature has C sparse coefficients specifying its contribution

to the C respective classes, we define for each feature a score as the maximum

absolute value of its coefficients in all the C classes. Then, the top t features are

selected by L1-SVM based on the score ranking. For SOS and SOSA, we selected505

the t features whose coefficients have non-zero `2-norms while the others have

exactly zero `2-norms. This can be achieved by controlling the penalization tun-

ing parameter λ for the `2,1-norm regularization to force the coefficients of other

features in the C classes are all zeros. We search λ in the range of 0.001 to 0.1.

As for the cross validation, we trained 90 percent of a given setting of the data510

to select the best t features in each fold and then calculated the classification

testing error rate by predicting the labels of the remaining 10 percent of the

samples using 1-nearest neighbor based on the respective t features selected by

each method. Note that the training samples were chosen from each class by 90

percent. In our experiments, t is set to 15 different numbers: 10, 20, 30, 40, 50,515

60, 70, 80, 90, 100, 120, 140, 160, 180, 200. We set the number of heterogeneous

factors as 3, 3 and 5 for ORL, COIL20 and DrivFace respectively. The selection

of this l will be discussed in Section 5.4. The dimension of projection space (k)

was set to C − 1 for data with C classes for simplicity.

5.3. Classification results using the selected features520

Fig. 2∼ 4 show the plots of average classification testing error rate over 10

folds versus the number of selected features(t) on ORL, COIL20 and Drivface

respectively. In each figure, (a), (b), (c) and (d) show the respective plot for

different settings of C-class classification with different number of samples. As

we can see, our proposed SOSA consistently outperforms all its competitors for525

all the settings of all the data sets. It is interesting to note that our SOSA
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Figure 2: Comparison of the classification performance on ORL using different number of

features selected from L1-SVM, SVA, SOS and SOSA. (a) 10-class classification with 100

samples; (b) 20-class classification with 200 samples; (c) 30-class classification with 300 sam-

ples; (d) 40-class classification with 400 samples. The black lines show the results using all

the 1024 features.

performs surprisingly well on ORL and DrivFace, even better than using all

the features in most cases by accounting for the data heterogeneity. For the 5-

class subset of COIL20 data, SOSA can achieve comparative performance to the

baseline using only 20 out of 1,024 features. For several subsets( i.e., 10,15,20530

classes) of COIL20 where their number of features is less than or comparative to
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Figure 3: Comparison of the classification performance on COIL20 using different number

of features selected from L1-SVM, SVA, SOS and SOSA. (a) 5-class classification with 360

samples; (b) 10-class classification with 720 samples; (c) 15-class classification with 1,080

samples; (d) 20-class classification with 1,440 samples. The black lines show the results using

all the 1,024 features.

that of samples, it is not surprising that all the feature selection methods can not

beat the baseline but they can achieve at least comparative performance using

less than 50 or 200 features. The improvement of classification performance is

usually larger when 10 ∼ 50 features were selected for the first two small data535

sets, which further implies its superior feature selection efficacy. SOSA and
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Figure 4: Comparison of the classification performance on DrivFace using different number

of features selected from L1-SVM, SVA, SOS and SOSA. (a) 2-class classification with un-

balanced 257 samples; (b) 4-class classification with unbalanced 606 samples. The black lines

show the results using all the 6,400 features.

SOS approach to the best results using much less features than other methods,

typically to the reasonable good results with around 50 features for the first

two data sets and 200 features for DrivFace. For some settings of the data

sets, SOS performs better than L1-SVM probably due to the reason that the540

`2,1-norm regularization can select features in a more suitable way than `1-

norm regularization for multi-class classification problem. Although the `1-norm

regularization in L1-SVM can lead to sparse coefficients, it can not guarantee

that the coefficients of a feature in all the C classes are all zero. Instead, the

`2,1-norm regularization is more natural to achieve this.545

In Table 3∼ 5, we further report the average classification testing error rate

over 10-fold cross validation using 10 features for all the methods on ORL and

COIL20 data. For DrivFace data, we report the corresponding results using 50

features. In other word, the number of selected features used for classification

in these tables is about 10% of total features for each data set. The last column550

of each table records the average classification performance over all settings of
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10 Classes 20 Classes 30 Classes 40 Classes Average

L1-SVM 32.0(5.93) 26.0(2.77) 36.7(2.57) 39.3(2.91) 33.6(3.55)

SVA 23.0(4.72) 39.5(4.11) 50.9(3.49) 44.5(1.89) 39.5(3.55)

SOS 20.0(3.33) 25.0(2.56) 27.0 (2.60) 26.8(2.87) 24.7(2.84)

SOSA 13.0(3.14) 12.8(2.47) 27.7(2.94) 22.0(1.43) 18.9(2.49)

Table 3: Average classification testing error rate (%) and its standard error from 10-fold cross

validation by using 10 features on ORL data.

5 Classes 10 Classes 15 Classes 20 Classes Average

L1-SVM 42.3(6.18) 34.3(4.11) 25.9(4.62) 23.8(4.63) 31.6(4.88)

SVA 55.4(3.64) 75.1(2.32) 81.6(1.59) 87.4(3.41) 74.9(2.74)

SOS 13.9(2.52) 31.4(2.91) 21.7(2.37) 26.1(3.55) 23.3(2.84)

SOSA 7.4(1.36) 23.0 (2.02) 16.0(1.59) 20.6 (2.71) 16.8 (1.92)

Table 4: Average classification testing error rate (%) and its standard error from 10-fold cross

validation by using 10 features on COIL20 data.

2 Classes 4 Classes Average

L1-SVM 14.0(3.59) 20.7(4.44) 17.4(4.01)

SVA 16.4(3.34) 26.4(4.65) 21.4(3.99)

SOS 15.6(4.48) 19.2(5.47) 17.4(4.98)

SOSA 12.0(3.18) 19.0(4.27) 15.5(3.73)

Table 5: Average classification testing error rate (%) and its standard error from 10-fold cross

validation by using 50 features on DrivFace data.

the data. In summary, we see that SOSA can reduce the classification error rate

by 10.9% to 23.5% in average compared to SOS owing to its appropriate ad-

justment of unknown data heterogeneity. Although SVA is capable of adjusting

the heterogeneity, it performs pretty worse than SOSA on all the data sets due555

to the feature redundancy issue as a filter method. Comparing with L1-SVM,

SOSA achieves 10.9% to 46.8% improvements in average owing to its adjustment

of unknown data heterogeneity and the more suitable `2,1-norm regularization.
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Figure 5: Plot of the classification performance versus the number of heterogeneous factors

when using 10 features (50 features for DrivFace) selected from SVA and SOSA. (a) ORL; (b)

COIL20; (c) DrivFace.

5.4. Parameter selection

To adjust the unknown data heterogeneity using our SOSA for feature selec-560

tion, we need to set a parameter l– the number of heterogeneous factors to be

estimated. We search in the range of 1 to 20 based on 10-fold cross validation.

The best one leading to the lowest average classification testing error will be

chosen. Fig. 5 shows the average classification testing error rate of SOSA from

10-fold cross validation versus the number of heterogeneous factors (l) using 10565
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selected features for ORL, COIL20 and 50 features for DrivFace. The classifi-

cation is performed on their entire data sets respectively. As we observed, the

classification testing error rate of SOSA for each data set decreases as the num-

ber of heterogeneous factors increases and then it increases when the number of

heterogeneous factors exceeds a certain threshold. It is worth being aware that570

the classification performance of SOSA has such a relatively more flat variation

trend with respect to l than that of SVA. Moreover, as an embedded feature

selection method, SOSA always performed better than SVA on all the data sets

when adjusting whichever the same number of heterogeneous factors. This fur-

ther suggests that our sparse optimal scoring model and the effective algorithm575

can help select more discriminant features than the filter method. We also see

that SOSA can adjust the unknown data heterogeneity to the maximum extent

using 3 or 5 heterogeneous factors for ORL, COIL20 and DrivFace data because

of the simple heterogeneity caused by such as lighting, facial expression, pho-

tographing angle and gaze direction. By observing that the best performance580

of SOSA on each data was achieved with a different number of heterogeneous

factors, the choice of l is closely related with the specific data heterogeneity

characteristics.

6. Conclusions

In this paper, we present a multi-class embedded feature selection method585

called as sparse optimal scoring with adjustment (SOSA), which is capable of

addressing the data heterogeneity issue. We propose to perform feature selection

on the adjusted data obtained by estimating and removing the unknown data

heterogeneity from original data. Our feature selection is formulated as a sparse

optimal scoring problem by imposing `2,1-norm regularization on the coefficient590

matrix which hence can be solved effectively by proximal gradient algorithm.

This allows our method can well handle the multi-class feature selection and

classification simultaneously for heterogenous data. The experimental results

on both synthetic data and three benchmark data sets have demonstrated that
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the features selected by our SOSA can consistently lead to better or compar-595

ative classification performance compared to those features selected by either

traditional embedded methods or the filter method accounting for data hetero-

geneity. Moreover, the superiority of SOSA is especially more obvious when

selecting less features. In the future work, we will consider to employ SOSA

to high-dimensional modern data involving data heterogeneity and millions of600

features such as biomedical data.
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